OpenNMT Tutorial GPU Error

Hi, I’m following the exact same tutorial as here: http://opennmt.net/OpenNMT-py/Library.html , but unfortunately get the error log as this (This is the error log with PyTorch 1.0.1.post2:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-7-d303a24fca32> in <module>
      9               train_steps=400,
     10               valid_iter=valid_iter,
---> 11               valid_steps=200)

~/OpenNMT-py/onmt/trainer.py in train(self, train_iter, train_steps, save_checkpoint_steps, valid_iter, valid_steps)
    207             self._gradient_accumulation(
    208                 batches, normalization, total_stats,
--> 209                 report_stats)
    210 
    211             if self.average_decay > 0 and i % self.average_every == 0:

~/OpenNMT-py/onmt/trainer.py in _gradient_accumulation(self, true_batches, normalization, total_stats, report_stats)
    327                     shard_size=self.shard_size,
    328                     trunc_start=j,
--> 329                     trunc_size=trunc_size)
    330 
    331                 if loss is not None:

~/OpenNMT-py/onmt/utils/loss.py in __call__(self, batch, output, attns, normalization, shard_size, trunc_start, trunc_size)
    156         batch_stats = onmt.utils.Statistics()
    157         for shard in shards(shard_state, shard_size):
--> 158             loss, stats = self._compute_loss(batch, **shard)
    159             loss.div(float(normalization)).backward()
    160             batch_stats.update(stats)

~/OpenNMT-py/onmt/utils/loss.py in _compute_loss(self, batch, output, target)
    231         bottled_output = self._bottle(output)
    232 
--> 233         scores = self.generator(bottled_output)
    234         gtruth = target.view(-1)
    235 

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    487             result = self._slow_forward(*input, **kwargs)
    488         else:
--> 489             result = self.forward(*input, **kwargs)
    490         for hook in self._forward_hooks.values():
    491             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input)
     90     def forward(self, input):
     91         for module in self._modules.values():
---> 92             input = module(input)
     93         return input
     94 

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    487             result = self._slow_forward(*input, **kwargs)
    488         else:
--> 489             result = self.forward(*input, **kwargs)
    490         for hook in self._forward_hooks.values():
    491             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py in forward(self, input)
     65     @weak_script_method
     66     def forward(self, input):
---> 67         return F.linear(input, self.weight, self.bias)
     68 
     69     def extra_repr(self):

~/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py in linear(input, weight, bias)
   1350     if input.dim() == 2 and bias is not None:
   1351         # fused op is marginally faster
-> 1352         ret = torch.addmm(torch.jit._unwrap_optional(bias), input, weight.t())
   1353     else:
   1354         output = input.matmul(weight.t())

RuntimeError: Expected object of backend CPU but got backend CUDA for argument #4 'mat1'

My PyTorch version is '1.0.1.post2', GPU is GTX 1080Ti, could someone help me out please? Is OpenNMT not compatible with the latest version of PyTorch?

UPDATE: I tried to downgrade my PyTorch version to 0.4.1 (with everything else the same) however i still get this error log. Seems like the data is still on CPU and not GPU, even though I have passed the correct device parameter = cuda to DatasetLazyIter. The code is exact same as the one here: http://opennmt.net/OpenNMT-py/Library.html (no changes to it, even the data is same).

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-8-d303a24fca32> in <module>
      9               train_steps=400,
     10               valid_iter=valid_iter,
---> 11               valid_steps=200)

~/OpenNMT-py/onmt/trainer.py in train(self, train_iter, train_steps, save_checkpoint_steps, valid_iter, valid_steps)
    207             self._gradient_accumulation(
    208                 batches, normalization, total_stats,
--> 209                 report_stats)
    210 
    211             if self.average_decay > 0 and i % self.average_every == 0:

~/OpenNMT-py/onmt/trainer.py in _gradient_accumulation(self, true_batches, normalization, total_stats, report_stats)
    327                     shard_size=self.shard_size,
    328                     trunc_start=j,
--> 329                     trunc_size=trunc_size)
    330 
    331                 if loss is not None:

~/OpenNMT-py/onmt/utils/loss.py in __call__(self, batch, output, attns, normalization, shard_size, trunc_start, trunc_size)
    156         batch_stats = onmt.utils.Statistics()
    157         for shard in shards(shard_state, shard_size):
--> 158             loss, stats = self._compute_loss(batch, **shard)
    159             loss.div(float(normalization)).backward()
    160             batch_stats.update(stats)

~/OpenNMT-py/onmt/utils/loss.py in _compute_loss(self, batch, output, target)
    231         bottled_output = self._bottle(output)
    232 
--> 233         scores = self.generator(bottled_output)
    234         gtruth = target.view(-1)
    235 

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input)
     89     def forward(self, input):
     90         for module in self._modules.values():
---> 91             input = module(input)
     92         return input
     93 

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
    475             result = self._slow_forward(*input, **kwargs)
    476         else:
--> 477             result = self.forward(*input, **kwargs)
    478         for hook in self._forward_hooks.values():
    479             hook_result = hook(self, input, result)

~/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py in forward(self, input)
     53 
     54     def forward(self, input):
---> 55         return F.linear(input, self.weight, self.bias)
     56 
     57     def extra_repr(self):

~/anaconda3/lib/python3.7/site-packages/torch/nn/functional.py in linear(input, weight, bias)
   1022     if input.dim() == 2 and bias is not None:
   1023         # fused op is marginally faster
-> 1024         return torch.addmm(bias, input, weight.t())
   1025 
   1026     output = input.matmul(weight.t())

RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #4 'mat1'

you need pytorch > 1.0 and torchtext > 0.4

look at the requirements on the README from github